

OwnTech TWIST Board Non-Isolated Dual Channel Reprogrammable Converter

The TWIST Board is a reprogrammable, bi-directional 300W power converter. It features a dual 12V to 72V low side and a single 10V to 110V high side. Its maximum current value is 8A per power channel.

The power channels can be used independently, yielding two output voltages or combined to double the current capacity.

The **TWIST Board** is fully open-source, compatible with either the SPIN board or any other programming system. It can communicate via CAN-bus or RS-485.

SPECIAL FEATURES

- 2 phase design
- DUAL or SINGLE power channel configuration
- Up to 97% Efficiency
- Standard size: 100mmx160mmx35mm
- Wide voltage operating range
- DC or AC operation
- Can be connected in parallel for higher power

- CAN bus communication compatible
- RS485 communication bus compatible
- Fully open-source
- Voltage and current mode libraries available
- Gitlab source here

AT A GLANCE

Rated Power

300W per module

Number of channels

Dual low side Single high side

Current ratings

8A per channel 16A in parallel

Voltage ratings

12V to 72V low side 12V to 100V high side

Figure 1 - TWIST converter pinout

I. General Power Block specifications

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
ABSOLUTE MAXIMUM RATINGS					
Low-Side voltage				90	V _{DC}
High-Side voltage		8		120	V _{DC}
Low-Side peak current per channel				8	А
Power Output				300	W
LC	OW-SIDE RATINGS				
Number of power channels			2		
Voltage range		12		72	V _{DC}
Max low-side peak current per channel				8	А
Voltage ripple			0.3		V _{DC}
н	GH-SIDE RATINGS				
Number of power channels			1		
Voltage range		12		100	V _{DC}
Voltage ripple			0.3		V _{DC}
SWITCHING CHARACTERISTICS					
Switching frequency			200		kHz
Selectable Deadtime	set resistors : $20k\Omega$		200		ns
Maximum gate current			4		А
TEMPERA	TURE AND DIMMENSION	IS			
Operating temperature		-20		+60	°C
Cooling principle		Nat	ural convectio	n	
Dimensions			L100 W100 H35		mm
PRO	TECTION FEATURES				
High side fuse	Tamb = 25°C		8		А
Low side fuse	Tamb = 25°C		8		А

II. Communication specifications

PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
	CAN-FD				
Baudrate			500	500	kBauds
Н	alf Duplex RS485				
Baudrate			10	20	MBauds
SPI					
Baudrate			0.5	20	MBauds
USART					
Baudrate			115200		Bauds

III. Synchronization

Figure 2. PWM synchronization between two boards, a server and a client.

Test with 2 boards connected with a 15cm RJ45 cable, measure taken with a 500Mhz bandwidth oscilloscope.

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT
PWM slewrate			660		mV/ns
Delay between server PWM, and synchronized client PWM	td		24.2		ns
Jitter of PWM client	tj		4.8		ns

IV. Analog communication

Figure 3. Step response of the analog communication

Test made with 2 boards (a server and a client), connected with a 15cm RJ45 cable. The server board is sending a 16 bit value equal to 2000 via the analog communication.

The step response is measured with a 500Mhz bandwidth oscilloscope.

PARAMETER	SYMBOL	MIN	ТҮР	МАХ	UNIT	
Step respons	Step response from 1V to 1.25V analysis					
Time to reach and stay at $\pm 5\%$ of the steady-state value	Δt5%		1.7		μs	
Steady-state value	Vfinal		1.25		V	
±5% Steady-state value interval	∆V = 0.1*Vfinal		0.125		V	
Bandwidth	$f_c = \frac{3}{2 * \pi * \Delta t_{5\%}}$		281		kHz	
Statistical distribution of 10235 data samples received by the client board when server sends a 16bit value of 2000					000	
Approximate normal distribution mean	μ		2032.65			
Approximate normal distribution variance	0 ²		0.795			

V.1 Indication of where analog measures are made on the board

V.2 Measurement chain

OwnTech's TWIST Board implements full observability on all low-side and high-side power channels through isolated measurements.

	V _{Low1}			
Sensor technology		Voltage divider and isolation amplifier		
Bandwidth		60	kHz	
Signal side amplitude		±250	mV	
Full scale range		±80	V	
	V _{Low2}	•		
Sensor technology		Voltage divider and isolation amplifier		
Bandwidth		60	kHz	
Signal side amplitude		±250	mV	
Full scale range		±80	V	
	V _{High}			
Sensor technology		Voltage divider and isolation amplifier		
Bandwidth		100	kHz	
Signal side amplitude		+2	V	
Full scale range		120	V	
	Low1			
Sensor technology		Isolated Hall effect sensor		
Bandwidth		1000	kHz	
Signal side amplitude		±20	А	
Full scale range		±10	А	
	I _{Low2}			
Sensor technology		Isolated Hall effect sensor		
Bandwidth		1000	kHz	
Signal side amplitude		±20	А	
Full scale range		±10	А	
	I _{High}			
Sensor technology		Isolated Hall effect sensor		
Bandwidth		1000	kHz	
Signal side amplitude		±20	А	
Full scale range		±20	A	
Heats	sink temperature sensor			
Sensor technology		Thermistor		
Full scale range		-40 +110	°C	
EMBEDDED ADC				
ADC Technology		Successive approximation (SAR)		
Independant ADC peripherals		2	-	
Number of channels per ADC		1 3 6		
Sampling time		530	ns	
ADC trigger		Programmable trigger instant on PWM period		
Trigger event typical frequency		200	kHz	

IV.2 Relative accuracy of voltage and current measure

Trigger value = 6%, carrier mode = center aligned unless specified

7

V.1 Standard deviation on voltage and current specifications

Trigger value = 6%, carrier mode = center aligned unless otherwise noted

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
V _{ILOW1} STAN	NDARD DEVIATION MEAS	SURE	·
	Not averaged	85	mV
	Average of 2 measures	61	mV
	Average of 3	50	mV
	Average of 5		
	measures	39	mv
	measures	28	mV
VILOW2 STAN	DARD DEVIATION MEAS	SURE	
	Not averaged	82	mV
	Average of 2 measures	58	mV
	Average of 3 measures	47	mV
	Average of 5 measures	37	mV
	Average of 10 measures	27	mV
V _{IHigh} STAN	DARD DEVIATION MEAS		
	Not ave aged	150	mV
	A teres or 2 minasures	108	mV
_	Average of 3 measures	88	mV
	measures	68	mV
	Average of 10 measures	48	mV
	DARD DEVIATION MEAS	SURE	1
	Not averaged	34	mA
	Average of 2	24	mA
	Average of 3 measures	20	mA
	Average of 5 measures	16	mA
	Average of 10	11	mA
III.0W2 STAN		SURE	1
	Not averaged	34	mA
	Average of 2	24	mA
	Average of 3	20	mA
	measures Average of 5		
	measures	15	MA
	measures	11	mA
I _{IHigh} STAN	DARD DEVIATION MEAS	SURE	1
	Not averaged	14	mA
	Average of 2 measures	10	mA
	Average of 3 measures	8	mA
	Average of 5 measures	6	mA
	Average of 10 measures	4	mA

TWIST Board Datasheet - rev 1

V.3 Theoretical calibration coefficients – results in Volts and Ampere

Coefficient	Value
Gain VLow1	0,045
Offset VLow1	-94,364
Gain VLow2	0,045
Offset VLow2	-94,364
Gain VHigh	0,029964
Offset VHigh	0
Gain ILow1	0,005
Offset ILow1	-10
Gain ILow2	0,005
Offset ILow2	-10
Gain IHigh	0,005
Offset IHigh	-10

V.4 Theoretical calibration coefficients – results in mili Volts and milli Ampere

	Coefficient	Value
	Gain VLow1	45,021
	Offset VLow1	-94364
	Gain VLow2	45,021
	Offset VLC 2	-94364
	Gain VHigh	29,964
	Officet VHigh	0
	Cain Low1	5
	Offset ILow1	-10000
	Gain ILow2	5
(Offset ILow2	-10000
Y	Gain IHigh	5
	Offset IHigh	-10000

VI. Typical applications

OwnTech's TWIST has a series of modes of operation shown in the table below.

MODE NAME	HIGH SIDE	LOW SIDE	Electrolytic capacitor	TYPICAL APPLICATION	FIGURE
DC-DC Buck	Input	Output	ON	Battery charger	I
DC-DC Boost	Output	Input	ON	Fuel-cell converter	П
1phase DC-AC Buck inverter	Input	Output	OFF	AC micro-grids	Ш
3phase DC-AC Buck inverter	Input	Output	OFF	Permanent magnet low- voltage motor	IV

VI. 1 Interleaved DCDC modes

Figure I - TWIST converter in Buck Mode

Figure II - TWIST converter in Boost Mode

DC-AC modes

Figure III - TWIST converter in single phase unipolar inverter mode

Figure III - TWIST converter in single phase bipolar inverter mode

VII. Mechanical specification

TWIST Board Datasheet - rev 1

VII. Revision history

Date	Revision	Changes
01-Janv-2024	1	Initial release